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Scientific computing on a graphics processor?

L Scientific computing on a graphics processor?

2018-10-18

Scientific computing on a graphics card?
Isn’t that just for computer graphics and video games?

Is this a talk about data visualizations?
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Graphics requires lots of linear algebra and trig — really fast S -
g LGrauphics requires lots of linear algebra and
ol a trig — really fast o
No! We're going to re-use things originally just meant for graphics.
Computer graphics is mostly linear algebra and trigonometry.
And it needs to be really fast to do things like high-framerate videogames, or to
. render CGI in movies in an acceptable timeline.
@ e Inersecton p Linear algebra is the foundation of scientific computing, so we're going to be very

happy!

R
llluminiation Equation (Blinn-Phong) with recursive Transmitted and Reflected Intensity:

@ T =kl + 1 (ka (E-8) 0 (7 R)") 4 A,IH.I

@ Snell’slaw: "0t oS, — <, Tefraction coefficients:

n,=1,n, =15
air gass
bt Simulati visible shadow rays
Area Light Simulation: 1, e

o=]

@) Nikolaus Leopold

D. Wysocki (RIT) GPU Programming with Python and CUDA



Single Tnstruction, Multiple Data (SIMD)

GPU Programming with Python and CUDA
Single Instruction, Multiple Data (SIMD)

2018-10-18

LSingle Instruction, Multiple Data (SIMD)

GPU’s are specially designed for the SIMD paradigm — single instruction, multiple
data

SIMD is like an assembly line, you want to perform the same operation over and over
again

key difference: in SIMD, the things coming down the assembly line might be different
each time

Example: one worker on the assembly line’s job is to “multiply by two”, next worker’s
job is to “multiply by the matrix A”, then the data gets merged with another
assembly line, where the next worker’s job is to “add together everything from the
two input assembly lines”.

Modern consumer CPU’s typically have 2 or 4 cores running in parallel, but GPU’s of
the same grade have hundreds of cores, albeit each core is typically less powerful than

£
5]
=
S
°
o
Kol
>
a
|
)
=
=
Ke)
S
@
1723
7]
©
°
=
S
i

D. Wysocki (RIT) GPU Programming with Python and CUDA a CPU core



GPU Programming with Python and CUDA

NVIDIA CUDA

L_NVIDIA CUDA
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<ANVIDIA.

CUDA

® Currently the best performing GPUs in the world are made by NVIDIA, and are
most efficiently programmed using their proprietary (freeware) language CUDA

* CUDA is basically an extension to C/C++

® Very low-level, requiring understanding of how GPU’s operate to get the most

efficient code possible
R-1-T
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CuPy — CUDA programming in NumPy style
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ﬁ CuPy
.

® CuPy is a free and open source Python library, meant as a replacement for NumPy, but
using CUDA under the hood

* It includes a large subset of NumPy’s features, along with additional tools for low-level
GPU stuff, and for converting data between CuPy and NumPy

e Available at https://cupy.chainer.org/

R-1-T
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LCuPy — Basic example
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Here’s a basic CuPy usage example from their documentation

>>> i t . A G s . . .
B “ First line imports CuPy as “cp”, similar to the common convention of importing
>>> x = cp.arange(6) .reshape(2, 3).astype('f') NumPv as “no” '
>>> x yas ap--
array([[ 0., , I Then they create an array using arange, just like you would in NumPy, and then they
3., , 11, dtype=float32) perform some manipulations also available in NumPy, reshape and astype.
>>> x.sum(axis=1)
array ([ , 1, dtype=float32) Finally they sum the array, using axis=1 to specify that it’s along the “column”

direction, as you can do in NumPy.

R-1-T
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CuPy installation

I—CuPy installation
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Assuming you already have CUDA installed, you can install CuPy with the standard
Python package manager pip.

# (For CUDA 8.0)
$ pip install cupy-cuda80

# (For CUDA 9.0)
$ pip install cupy-cuda90

# (For CUDA 9.1)
$ pip install cupy-cuda91l

# (Install CuPy from source)
$ pip install cupy

GPU Programming with Python and CUDA
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CuPy Arrays =
g I—CuPy Arrays
® The core data structure in CuPy is the N-dimensional array, cupy.ndarray |
* Looks and behaves almost exactly like the N-dimensional array in NumPy, except it is
allocated in the GPU’s memory instead First read bullet points

See CuPy has the same ndarray constructor methods as NumPy, e.g., arange for
making sequences of increasing numbers, or ones for making arrays of just ones.

‘ >>> import

>>> cupy.arange(5)
array ([0, 1, 2, 3, 4])
>>> numpy.arange (5)
array([0, 1, 2, 3, 41)

>>> cupy.ones((2,2), dtype=
array([[ 1., 1

Lilog 1D
>>> numpy.ones((2,2), dtype=
array ([[ 1., e

Lileg 1D
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Basic arithmetic in CuPy

L Basic arithmetic in CuPy
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® CuPy arrays support all basic arithmetic NumPy arrays do

>>> x = cupy.arange(4) ] >>> x +

>>> x . array ([

array([0, 1, 2, 3]1) 3 | >>> x %
array ([
>>> x /
array ([
>>> x -
array ([0,
>>> * X
array ([0,
>>> x*k%k
array ([0, 1,
>>> 3k (x**2 +
array([ 3,
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More math functions in CuPy

L More math functions in CuPy
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>>> cupy.sin(x)

array ([

>>> cupy.cos(x)

array ([

>>> cupy.exp(x)

array ([

>>> cupy.sqrt(x)

array ([ s

>>> cupy.outer(x, x)

array([[0, 0, 0, O],
o, 1, 2, 31,
Lo, 2 4y Gl
fo, 3, 1D

D. Wysocki (RIT) GPU Programming with Python and CUDA



GPU Programming with Python and CUDA

Mixing CuPy and NumPy arrays (wrong way)

L Mixing CuPy and NumPy arrays (wrong way)
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>>> cupy.arange(0, 5) + cupy.arange(3, 8)
array([ 3, 5, 7, 9, 11])

>>> cupy.arange(0, 5) + numpy.arange(3,

D Ol R W N

TypeError Traceback (most recent call last)
<ipython- = f4a4a370> in <module>()

----> 1 cupy.arange(0, 5) + numpy.arange(3, 8)

cupy/core/core.pyx in cupy.core.core.ndarray.

cupy/core/elementwise.pxi in cupy.core.core.ufunc. O

cupy/core/elementwise.pxi in cupy.core.core._preprocess_args()

TypeError: Unsupported 'numpy .ndarray'>
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L Mixing CuPy and NumPy arrays (right way)

® must convert between CuPy and NumPy arrays to mix
® cupy.asnumpy(): CuPy—NumPy
® cupy.asarray(): NuMPy—CuPy

>>> cupy.asnumpy (cupy.arange(0, 5)) + numpy.arange(3, 8)
array([ 3, 5, 7, 9, 111)

>>> (cupy . asnumpy (cupy.arange (0, 5)) + numpy.arange(3, 8))
numpy .ndarray

1
2
3
4
5

(=]

~

>>> (cupy.arange(0, 5) + cupy.asarray(numpy.arange(3, 8)))
cupy.core.core.ndarray

oo

e Beware: slow process, should avoid everywhere possible
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Writing CuPy/NumPy agnostic code
L Writing CuPy/NumPy agnostic code
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® Can write functions that work on both CuPy and NumPy

If you want to write code that works on both CuPy and NumPy arrays (e.g.,
generic-enough functions that you might use it on both types of arrays at some point,
or perhaps you plan on having both a CPU and GPU version of your code — no need
to duplicate effort!

>>> def (x):
"exp(i*x) = cos(x) + i*sin(x)"
# Can be either “numpy  or “cupy .
Xpy = cupy.get_array_module(x)
# Compute the result with the right library.
return xpy.cos(x) + 1j*xpy.sin(x)

1
2
4
5
6
7

>>> (euler_formula(cupy.arange(10)))
cupy.core.core.ndarray

>>> (euler_formula(numpy.arange(10)))
numpy .ndarray

GPU Programming with Python and CUDA
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Writing CuPy/NumPy agnostic code (optimized) S
g L Writing CuPy/NumPy agnostic code
® For extra speed, you can save the call to cupy.get_array module S (optimized)
>>> def (x, xpy=cupy): cupy.get_array module makes it convenient and safe to write functions that work on
"exp(i*x) = cos(x) + i*sin(x)" both CuPy and NumPy arrays

# Compute the result with the right library.
return xpy.cos(x) + 1j*xpy.sin(x)

However, it’s an extra operation, and if you call this function
millions/billions/trillions of times, you're going to lose a sizable amount of time to it

>>> (euler_formula(cupy.arange(10), xpy=cupy))

cupy. core. core .ndarray Can simply add xpy as an argument to the function

This does mean it can crash your code if you make a mistake in which module you
>>> (euler_formula(numpy.arange(10), xpy=numpy)) pass in
numpy .ndarray

>>> (euler_formula(numpy.arange(10), xpy=cupy))
TypeError: Unsupported < 'numpy .ndarray'>
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More power — kernels

>>>

>>>
>>>
>>>

>>>

squared_diff = cupy.ElementwiseKernel(
'float32 x, float32 y', # Input arrays
'float32 z', # Output array

'z = (x -y) * (x - y)', # Compute the result and store in output array.

'squared_diff', # Name the kernel

X = cupy.arange(10, dtype=np.float32).reshape(2,
y = cupy.arange(5, dtype=np.float32)
squared_diff(x, y)

array([[ 0., : : : 1,

[25., > > 5 11, dtype=float32)
squared_diff(x, 5)

array ([[25., : : : 1,

Lo., > > 5 11, dtype=float32)
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L More power — kernels

Sometimes you want more power, and need to write your own CUDA kernel.
CuPy can help you write these kernels in a micro-language it provides.

Basic example is element-wise kernel, which takes in two arrays of the same shape,
performs an operation on each corresponding pair of elements, and returns the result
in a new array of the same shape.
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LType— generic kernels
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>>> squared_diff_generic = cupy.ElementwiseKernel(
'Tx, Ty',
'T z',
'z=(x-y)*x x-y°',
'squared_diff_generic',

)
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Map/Reduce kernels

>>> 12norm_kernel = cupy.ReductionKernel(
'T x', # input params
'T y', # output params
'x * x', # map
'a + b', # reduce,
'y = sqrt(a)', # post-reduction map
'0', # identity value
'12norm' # kernel name
coe )
>>> x = cp.arange(10, dtype=np.float32).reshape(2,
>>> 12norm_kernel (x, axis=1)
array ([ s 1, dtype=float32)

D. Wysocki (RIT) GPU mm th
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L Map,/Reduce kernels

map step increases dimensionality of the array, in this case it’s an outer product
reduce step reduces (duh) dimensionality of the array
a and b are special variables

— a denotes the result accumulated thus far
— b denotes the next element being operated on

post-reduction step doesn’t change shape — it’s just elementwise
identity value is the initial value of a

may need to draw a grid on the whiteboard to explain map/reduce parts
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Profiling — cProfile

LProﬁling — cProfile
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® cProfile records function-level timing statistics
® Simply run python command as usual, but with -m cProfile
® e.g., python my_script.py becomes python -m cProfile my_script.py
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Test program — naive version

import
seed = 1; random = numpy.random.RandomState (seed)
x = random.uniform(size=( s )); y = numpy.zeros(
def OF
for i in ( ):
for j in ¢ DE
y[il += x[1i,j]
def O
global z
z =
for i in ( ):
z += y[i]
sum_2d ()
sum_1d()

D. Wysocki (RIT) GPU Pr m vith Py and
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Profiling — naive version

$ python -m cProfile big_calculation_naive.py
.4643
function calls ( primitive calls) in 9.976 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
.000 <string>:1(<module>)

.976 big_calculation_naive.py:1(<module>)

.001 big_calculation_naive.py:11(sum_1d)
.482 big_calculation_naive.py:7 (sum_2d)

D. Wysocki (RIT) GPU Programming with Python and CUDA
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I—Proﬁling — naive version




Test program — efficiently with NumPy

import numpy
seed = 1; random = numpy.random.RandomState (seed)
x = random.uniform(size=( ,5000)); y = numpy.zeros(

def sum_2d():
x.sum(axis=1, out=y)
def sum_1d():
global z
z = y.sum()
sum_2d ()
sum_1d()

print(z)

D. Wysocki (RIT) GPU Programming with Python and CUDA
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Profiling — efficiently with NumPy

$ python -m cProfile big_calculation_numpy.py
.4643
function calls ( primitive calls) in 0.508 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
.000 <string>:1(<module>)

.508 big_calculation_numpy.py:1(<module>)

.015 big_calculation_numpy.py:7 (sum_2d)
.000 big_calculation_numpy.py:9(sum_1d)
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I—Proﬁling — efficiently with NumPy

ng — efficiently with NunPy
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Test program — efficiently with CuPy

L Test program — efficiently with CuPy
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import cupy
seed = 1; random = cupy.random.RandomState (seed)
x = random.uniform(size=( ,5000)); y = cupy.zeros(

def sum_2d():
x.sum(axis=1, out=y)
def sum_1d():
global z
z = y.sum()
sum_2d ()
sum_1d ()

print(z)
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Profiling — efficiently with CuPy

$ python -m cProfile big_calculation_cupy.py
.3008
function calls ( primitive calls) in 1.514 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
.000 <string>:1(<module>)

.516 big_calculation_cupy.py:1(<module>)

.020 big_calculation_cupy.py:7 (sum_2d)
.033 big_calculation_cupy.py:9(sum_1d)
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Profiling — kernprof
LProﬁling — kernprof
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kernprof records line-level timing statistics
Need to pip install line profiler

Add @profile before functions you want profiled
Run script with kernprof -1 instead of python
® e.g., python my_script.py becomes kernprof -1 my_script.py

Then read profiling summary with python -m line profiler my_script.py.lprof

R-1-T
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Test program — naive version

L Test program — naive version
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‘ import
seed = 1; random = numpy.random.RandomState (seed)

Q@profile
def OF
random.uniform(size=( 5 ))
numpy . empty (( : )
i in ( DE;
for j in ( DE
z[i,j] = x[i,j] + x[j,i]
z.sum()
print(y)

main ()
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Profiling — naive version (I)

$ kernprof -1 kernprof_demo_slow.py

.508257
Wrote profile results to kernprof_demo_slow.py.lprof
$ python -m line_profiler kernprof_demo_slow.py.lprof

D. Wysocki (RIT) GPU Programming with Python and CUDA
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Profiling — naive version (II)

L Profiling — naive version (II)
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Timer unit: 1e-06 s

Total time: 3.19258 s
File: kernprof_demo_slow.py
Function: main at line

Time Per Hit % T4 Line Contents

Oprofile
def main():
x = random.uniform(size=( ,1000))
z = numpy.empty (( ,1000))
for i in range( ):
for j in range( DE
z[i,j] = x[i,j] + x[j,i]
y = z.sum()

print (y) f
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Test program — fast version

L Test program — fast version
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import
seed = 1; random = numpy.random.RandomState(seed)

@profile
def O:
= random.uniform(size=(
x + x.T
z.sum()
print(y)

main ()

GPU Programming with Python and CUDA



Profiling — fast version (I)

$ kernprof -1 kernprof_demo_fast.py

.508257
Wrote profile results to kernprof_demo_fast.py.lprof
$ python -m line_profiler kernprof_demo_fast.py.lprof
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L Profiling — fast version (I)
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Profiling — fast version (II)
L Profiling — fast version (II)
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Timer unit: 1e-06 s

Total time: 0.022384 s
File: kernprof_demo_fast.py
Function: main at line

Time Per Hit % T4 Line Contents

Oprofile
def main():
x = random.uniform(size=( ,1000))
z=x +x.T
y = z.sum()
print (y)

R-1-T
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0
Profiling GPU code with NVIDIA Profiler (nvprof) 2
z L Profiling GPU code with NVIDIA Profiler
$ nvprof python big_calculation_cupy.py o (nvprof)

==3127650== NVPROF is profiling process , command: python big_calculation_cupy.py

Profiling application: python big_calculation_cupy.py
==3127650== Profiling result:
Type Time (%) Time Calls Avg Min Max Name
GPU activities: .59Y% .765ms .765ms .765ms .765ms generate_seed_psq{
.08% .114ms .557ms .28T7us .102ms cupy_sum
.30% .890ms .890ms .890ms .890ms cupy_multiply
.29% .882ms .882ms .882ms .882ms cupy_add
.90% .695ms .695ms .695ms .695ms cupy_random_1_mii
.84, .752ms .752ms .752ms .752ms void gen_sequencs
.00% .3350us .3350us .3350us .3350us [CUDA memset]
.00% 1.4400us .4400us .4400us .4400us [CUDA memcpy Dtof
API calls: o .299ms .1880us cudaFree
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Profiling GPU code with NVIDIA Visual Profiler (nvvp)
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LProfiling GPU code with NVIDIA Visual
Profiler (nvvp)

$ nvvc python big_calculation_cupy.py
Will add this if I can get it to work in time.
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